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Abstract

A statistical evaluation of the Baltimore County water well database was performed to gain
insight on the sustainability of domestic supply wells in crystalline bedrock aquifers over the
last 15 years. Variables potentially related to well yield that were considered included well
construction, geology, well depth, and static water level. A variety of statistical methods
were utilized to assess correlation and significance from a database of approximately 8,500
wells, and a logistic regression model was developed to predict the probability of well
failure by geology type. Results of a two-way analysis of variance technique indicate that
the average well depth and yield are statistically different among the established geology
groups, and between failed and non-failed wells. The static water level was shown to
be statistically different among the geology groups but not among failed and non-failed

wells. A logistic regression model results that well yield is the most influential variable for



predicting well failure. Static water level and well depth was not found to be significant in

predicting well failure.

Keywords: Logistic regression, Well failure, Odds of failure, Geology formation, Pre-

diction.



1 Introduction

The Baltimore County Master Plan 2010 (Baltimore County Council, 2000) incorporates
the designation of two land management areas: the urban area and the rural area. The
boundary separating these two land management areas is called the Urban-Rural Demar-
cation Line (URDL). The urban areas have public water and sewer infrastructure, and the
rural areas rely on individual private wells and septic systems. Approximately 80,000 peo-
ple live in the rural areas where the geology consists of a group of crystalline rock aquifers
(metamorphic and igneous) that are commonly referred to as the Piedmont physiographic
province. Ground water occurrence (yield) within the crystalline rocks is extremely vari-
able, and there are noted formations where there is relatively poor well productivity (Nutter
and Otten, 1969). The Piedmont aquifers are also unconfined, and therefore, susceptible
to contamination from land use practices. Given the nature of the geology, it is important
that new development in these rural areas be carefully evaluated to ensure that domestic
well water supplies are reasonably protected and sustainable.

The Baltimore County Department of Environmental Protection and Resource Manage-
ment (DEPRM) is charged with the responsibility of ensuring "safe and adequate” water
supplies for proposed development in Baltimore County utilizing wells for their domestic
water needs. DEPRM considers the existing setback requirements, well construction reg-
ulations, and development regulations to be reasonably adequate to protect existing and
proposed water supplies. However, there is continuous concern from residents as to whether
or not proposed new development in the rural areas will have adverse impacts on exist-

ing land uses. Therefore, gaining a better understanding of well yield sustainability and



whether or not well yield failure in the Piedmont can be practically predicted is of great
interest to the regulatory, development, and residential communities in Baltimore County.
The findings presented in this study may be used to address some of the many questions
that have arisen over the years concerning whether existing regulations and practices are
sufficient and effective in protecting and preserving domestic water well supplies.

In the sections to follow, we will describe the data set that was used to develop a
logistics regression model to predict the probability of well failure. We will discuss influence
diagnostics to determine the model’s accuracy, and also assess the predict power of the
estimated model. And finally, we will discuss the potential ramifications of how the data

might be used to change and/or support existing regulations governing rural development.

2 Data Structure

DEPRM manages all the well records for drilling in Baltimore County, which includes
information concerning well locations, well usage, well yield, static water level (distance
from the land surface to the depth of water in the well), and total well depth. There are 28
different geologic formations in Baltimore County. However, for the purposes of this study,
the Piedmont formations were categorized into eight geologic groups: Gneiss, Granite,
Mafic, Marble, Loch Raven Schist, Prettyboy Schist, Other Schists, and Serpentine. Table
1 displays the classification of the geology groups and the corresponding total study area.
DEPRM used a Geographic Information System (GIS) to correlate a geology group with the
location of each well that had a known address. Although database maintains records for

approximately 21,000 domestic wells as of February 2005, only 8,483 could be geographically



located and matched to a geology group.

To assess well sustainability, the 8,483 wells were further divided into two groups: failed,
and non-failed wells. Failed wells were identified as those wells that were replaced by a new
well due to reported yield problems. Non-failed wells were identified as those wells that
have not been replaced due to reported yield problems. Table 2 presents the number and
percentage (in parentheses) of failed and non-failed wells distributed in each geology group.
The frequency distribution indicates that nearly 9% of the wells have failed, regardless of
geology type. Considering the geology type, the highest percentage of failed wells occurs
in the Loch Raven Schist (11.6%), followed by Gneiss (10%), Marble (9.4%), Serpentine
(7.7%), Granite (7.1%), Other Schists (4.9%), and Prettyboy Schist (4.3%). The Mafic
wells have the lowest percentage of well failures at 3.9%. It should be noted that the
relatively small number of wells in the Granite and Serpentine groups might lessen the
significance of statistical inferences for these two geology groups.

In the database, there is also information about the characteristics of wells, such as
the depth, static water level and yield of wells. Table 3 displays the summary statistics of
these measures of failed and non-failed wells in each geology group. The average depth,
static water level and yield of wells at different geology groups are not all the same, and
are different between failed and non-failed wells. Two-way analysis of variance technique
was applied to study the difference of these measures among the geology groups, and
between the failed and non-failed wells, where the main effects are ”geo-group” for the 8
geology groups, and "response” with 71”7 for failed and 70" non-failed wells. Due to the
missing values in the database, only 8482, 6996 and 8478 wells were used respectively in

the analysis of well depth, static water level and yield. Starting from a full model with
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both main effects and interaction effects, the results reveal that interaction effects are not
statistically significant. Therefore, we applied an analysis with the main effects only; the
test statistics and associated p-value for the equality of well depth, static water level and
yield among geology groups are illustrated in Table 4. It confirms that the average well
depth and yield are not the same among the geology groups, or between the failed and non-
failed wells. The data does not provide enough evidence to conclude that the static water
level is different between failed and non-failed wells, but differences among the geology
groups are statistically significant. Tukey-Kramer technique is a well-known procedure
used to perform pair-wise comparisons simultaneously (Neter, etc. 1996). Tukey’s pair-
wise multiple comparison shows that the wells in Loch Raven Schist are deeper and have
less yield, wells in the Mafic are shallower, and wells in the Marble have higher yield than
those in the other geology groups. The average static water levels of wells are different
between most of the geology groups. The majority of test results regarding the geology

groups Granite and Serpentine are not statistically significant due to small data records.

3 Data Analysis

Logistic regression models are the most commonly used probabilistic models for a binary
(success-failure) response variable such as a "yes/no” question. It has wide applications
in biomedical fields, genetics, reliability engineering experiments, social science research,
business and environmental studies. A logistic regression model was developed using the
well data from DEPRM for the purposes of estimating the probability that a well will fail

given certain variables.



For this study, we considered 4 main variables in the model; well depth, static water
level, well yield, and geology group, as well as the 11 interaction effects among them. In
order to find the most efficient model, a stepwise automatic search procedure was applied
to identify the best subset of useful effects to be included in the final model. The outcome
model includes two main effects, well yield and geology group, and their interaction effects.
The summary of model selection results is displayed in Table 5, and the analysis variance
table of the final model is presented in Table 6.

The final estimated logistic regression model is

log(#) = Q) + (07 + ﬁo(yzeld”) + ﬁz(yZGZdw) + €ij,
— Dij

where 7 represents the geo-groups with 1 for Gneiss, 2 for Granite, 3 for Mafic, 4 for Marble,
5 for Loch Raven Schist, 6 for Prettyboy Schist, 7 for all other schist, and 8 for Serpentine;
and j represents each well. Therefore, p;; represents the probability of failure for jth well
in ith geology group. Here ay is a baseline or average log(odds) for all the geo-groups when
the yield equals to 0. It is not important that an well having yield equals to 0 be realistic;
rather ag represents a reference point, and «; is the deviations from «aqy due to the effect
of geo-group i; [y is a baseline or average decrease of log(odds) for every increase of 1
gallon/min in yield, and ; is the deviation from 3y due to the effect of geo-group i. The

assumptions for the model are as follows:
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distributions with mean 0 and variance 1.

The statistical software SAS (Allison, 2001; Cody& Smith 2005) was used to perform the
estimates of these parameters, and the results are displayed in Table 7. With the estimated
the parameters, we have the following equations that can be used to predict the probability

of well failure, p, based on the initial yield and the geology group.

For Gneiss, p = 1/(1 + exp(0.9783 + 0.1772 x yield));

For Granite, p = 1/(1 + exp(2.1705 + 0.0437 x yield));

For Loch Raven Schist, p = 1/(1 4 exp(1.3928 + 0.1226 x yield));

For Mafic, p = 1/(1 + exp(2.5695 + 0.0858 x yield));

For Marble, p = 1/(1 4 exp(1.8601 + 0.0379 X yield));

For Prettyboy Schist, p = 1/(1 + exp(2.3986 + 0.1010 x yield));

For Other Schists, p = 1/(1 4 exp(2.0004 + 0.1381 x yield));

For Serpentine, p = 1/(1 + exp(1.0882 4 0.19935 x yield)).

A plot of each equation, shown in Figure 1, reveals that all of the geology groups have an
exponential decrease in the probability of well failure with increasing yield. At low yields
(1-3 gpm), in particular, the rate of predicted well failure ranges considerably by geology
type. The model indicates that the geology group with the highest predicted failure rate
at the minimum allowable well yield (1 gpm) is the Gneiss at nearly 24%, followed by

Serpentine at 22%, Loch Raven Schist at 18%, Marble at 13%, Granite and Other Schists



at 10%, Prettyboy Schist at 8% and Mafic at 6%. It is interesting to note that the Mafic and
Prettyboy Schist wells show a significantly lower probability of well failure at the minimum
well yield even though the average yield for both of the geology types is lower than nearly
all other geology types (exception: Loch Raven Schist).

The Marble and Granite geology groups show a markedly slower decline than other
geology groups. In fact, at well yields above 6.33 gpm, the Marble becomes the geology
group with the highest probability of well failure. The reason for this difference is not
exactly clear, but in the case of the Marble, it may be due to geologic reasons. For instance,
the presence of relatively large subsurface solution channels is known to exist in the Marble
aquifers and is considered one of the primary reasons for the observed high well yields in
this geology group. These solution channels may occasionally collapse or become filled
with sediment, thereby reducing what was a high yielding well into a non-productive well.
As mentioned earlier, the relatively small data set for the Granite could limit the models

reliability for this geology type.

4 Influence Diagnostics

It is always very important to examine the outliers and influential observations in the data
to refine the model. The estimated model could be quite different if there is an outlier
with a large influence. Plots of residuals against explanatory variables and the predicted
probabilities are very useful tools to identify outliers. Figure 2 consists of scatter plots
of the deviance residual and the Pearson residual against the explanatory variable, well

yield, and the predicted probabilities of well failure. In each plot, the regular residuals,



the deviance residuals or the Pearson residuals, are clustered into two groups. The upper
group of residuals is from the non-failed wells, and the lower group is from failed wells. No
obvious outlier is exhibited in the scatter plot of deviance residuals with well yield or the
predicated well failure probabilities. The scatter plots of the Pearson residual indicate that
one observation with a high value of greater than 12 may be an outlier. In order to identify
this potential outlier, scatter plots of the Pearson residual against well yield of each geology
groups were constructed, see Figure 3. It can be seen that the potential outlier is referring
to a well in Loch Raven Schist, however, it seems to follow the trend line of the residuals
in the upper group. As mentioned by Agresti, when explanatory variables are continuous,
there are only one residual for each setting, and a signal residual is often uninformative.

Other helpful tools used to assess the fitness of a model are diagnostics of an observa-
tion’s influence on parameter estimates. The greater an observation’s leverage, the greater
its potential influence. The most commonly used tool to assess the influence of an ob-
servation is through the measure of the change in some statistics when the observation is
removed from the data. Three standard statistics that serve this purpose are: the joint
confidence interval for the parameters, denoted by c¢; the chi-square goodness-of-fit statis-
tic, denoted by x?; and the deviance goodness-of-fit statistic, denoted by G2. The larger
the change, the higher influence the observation has on the estimation of the parameter
(Agresti 2002).

Figure 4 illustrates the scatter plots of the changes of those measures when an observa-
tion is deleted against the explanatory variable, well yield, and the predicted probabilities.
Similar to Figure 2, there are two clusters in each plot. The measures from failed wells are

the upper group; the non-failed wells are the lower group of each plot. The two plots in the



top panel of Figure 4 illustrate the changes in G? when an observation is deleted against
well yield and predicted probabilities of well failure, respectively. The largest change in G?
is more than 10. However, there is no clear evidence that this observation has unusually
larger influence on G? than the others. The two plots in the middle panel illustrate the
changes in x? when an observation is deleted. It seems that there is one observation, which
one has larger influence on the x? than the others, and has the value greater than 150.
In order to identify this potential high influence observation, scatter plots of the changes
in x? against well yield of each geology group is constructed, see Figure 5. It shows that
the observation is from Loch Raven Schist, and it seems to follow the trend of the line of
failed wells. The bottom panel of Figure 4 illustrates the change in ¢ when an observation
is deleted. There are several large values (> 0.4) in the plots. In order to identify this
potential high influence observation, scatter plots of the changes in ¢ against well yield of
each geology group were constructed, and presented in Figure 6. These scatter plots show
that only one observation from Mafic with the change in ¢ greater than 0.4 may have high
influence on the model.

A logistic regression model was fitted without these potential outliers and high influence
observations. However, the resulting estimated model does not change significantly from
the former estimated model. We used the former estimation as our final estimated model,

and to predict the probability of well failure.



5 Power of the Prediction

The power of the prediction of a logistic model can be summarized by two measures:
sensitivity and specificity. For some given cutoff value 7, if the predicted probability is
greater than 7y, then the well is predicted to fail, otherwise the well is predicted to not
fail. The percentage of correctly predicting well failure is called the sensitivity, and the
percentage of correctly predicting non-failed well is called specificity. For multiple cutoffs
o, & receiver operating characteristic (ROC) curve is a commonly used tool to assess the
power of prediction of a logistic model. It is a plot of sensitivity against (1-specificity) for
all possible cutoffs 7. This curve usually has a concave shape. The larger the area under
the curve, the better the prediction. Figure 7 is the ROC curve of our estimated logistic
model of predicting well failures. The area under the curve is identical to the value of
another measure of predict power, the concordance index, which measures the probability
that the predictions and the outcomes are concordant. For our study, the concordance
index is 0.708, meaning that overall, we will have a 71% chance of correctly predicting the

probability of well failure.

6 Discussion

In Baltimore County, DEPRM reviews all proposed domestic well locations to ensure ad-
herence to minimum setback distances from domestic wells to other wells, to potential
sources of contamination (e.g., septic systems, underground petroleum storage tanks, etc.),
to property lines, roads and to buildings. Setback distances and well construction stan-

dards were established over 25 year ago to minimize potential influences between wells and
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to protect well water quality. DEPRM’s experience has been that these regulations have
generally been effective. However, there are no allowances provided in the regulation for
the potential need to drill replacement water supplies at some point in the future. Unlike
the requirements for utilizing an on-site sewage disposal system (OSDS) where a ”septic
reserve area’ must be established prior to issuance of a building permit, there is no re-
quirement in for a "well reserve area.” There have been many instances over the years
where replacement water supplies cannot meet the minimum setback requirements, par-
ticularly for undersized lots of record, and subdivisions where lots are less than 2 acres
in size. Property owners must seek variances to existing setbacks and in some cases have
had to acquire easements on neighboring properties to attain adequate well yield and/or
water quality. The problem of finding a suitable replacement well location becomes even
more problematic when multiple drilling attempts are required to attain a suitable yield.
Fortunately, this scenario appears to occur on a relatively small number of cases. Since
1990, when the number of unsuccessful drill attempts (dry holes) per lot were first tracked,
over 95% of drilling attempts for replacement wells were successful on the first attempt; 2%
had more than 1 drilling attempt; and less than 0.5% had more than 5 drilling attempts.

The statistical analysis provided in this study may be used to argue for regulatory
changes that would require "well reserve areas” on all new lots. This would likely increase
overall lot size and, therefore, decrease building density. Alternately, one may argue the
raising the minimum well yield would provide better protection for property owners. How-
ever, this may create a large number of unbuildable areas, and indirectly affect the resale
value of existing homes with well yields below the minimum.

Of course, the data presented does not take into account other factors that may impact
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the well failure rate. In 2002, Maryland experienced arguably one of the worst droughts on
record. During that year, there was a 5-fold increase in the number of replacement wells
drilled over the previous 10-year average. While the drought caused grave concern for rural
residents, the roughly 350 replacement wells drilled in 2002 represent less than 1% of the
total number of wells in Baltimore County, and only about 4% of the well population used
in this study. The relatively low percentage of wells impacted during the drought seems
to indicate that well sustainability in the Piedmont may not be as sensitive to changes in
precipitation as generally assumed. The spatial distribution of replacement wells during
the drought year indicates that highest percentage of well failure occurred in the Mafic
at 2.4%, compared with all other geology groups that had failure rates between 0.9% and
1.5%. This seems contrary to the model presented in this study which indicates that the
Mafic wells have the lowest overall failure rate. However, as explained below, the overall
well population used to calculate these statistics includes many wells that may be more
susceptible to well failure.

In 1980, the state of Maryland adopted regulations requiring more stringent well con-
struction and yield testing practices. In addition, Baltimore County enacted legislation in
1978 requiring that upon transfer of real property, domestic wells must be able to produce
a sustained minimum yield of 1 gallon/minute. It is estimated that almost half of the wells
currently in use in Baltimore County were drilled prior to 1980 for which there may be
little or no well construction information. Since these older wells are generally shallower,
and considered more susceptible to drought and yield problems, it is not surprising that
DEPRM records show that nearly 70% of the wells replaced due to yield problems from

1989 - 2005 were wells drilled prior to 1980. Clearly, the older wells are slowly being re-
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placed as properties are being transferred and/or residents experience yield problems. The
findings in this study should not be strongly influenced strongly by older wells since only
wells with complete well information were used (i.e. wells drilled after 1980).

Social trends may also affect the number of well replacements as water consumption in
the U.S. has risen over the last few decades. According to the U.S. Environmental Pro-
tection Agency, the average household now uses approximately 181 gallons/day, compared
with only 164 gallons/day in 1970. The more prevalent use of private swimming pools,
landscaping and other outdoor watering needs may add a considerable strain to a domestic

well water supply with a low yield.

7 Conclusions

The main goal of this study was to assess whether the well data collected could be used
to predict the probability of well failure in the Piedmont. Analysis of the observed data
clearly indicates that well failure is correlated strongly with well yield and to a lesser degree
with geology type. The relatively high percentage of failure for low yielding wells in certain
geology types may be good reason to consider a requirement for well reserve areas during
the building/subdivision approval process. This study does not address the possibility
that eventually all wells may fail. Certainly, it would require a much longer period of
data collection (perhaps 20-40 years) to determine for average well longevity for new and

replacement wells.
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Table 1: Grouping of geologic formations and total study area

Group Title Formations included in group Area (Acre)

Gneiss Baltimore Gneiss, Franklinville Gneiss,

Gunpowder Gneiss,Setters Gneiss,

Perry Hall Gneiss, Sykesville Gneiss |, 43,121

Cold Spring Gneiss, Slaughterhouse Gneiss
Granite Ellicott City Granite, Woodstock Granite 1,181
Loch Raven Schist | Loch Raven Schist 63,994
Mafic Mt. Washington Amphibolite,

Hollofield Layered Ultramafite,

Bradshaw Layered Amphibolite, 10,408

James Run-Druid Hill Amphibolite,
Raspeburg Amphibolite

Marble Cockeysville Marble, Hydes Marble 23,151
Prettyboy Schist Prettyboy Schist 63,353
Other Schists Pleasant Grove Schist, Sykesville Schist,

Oella Formation, Piney Run Formation, 34,753

Setters Schist

Serpentine Serpentine Ultamafite 3,236

Table 2: Frequency distribution of failed and non-failed wells in different geology groups

Geo-group Non-Failed Failed Total
Gneiss 1515(89.91%) 170(10.09%) | 1685
Granite 26(92.86%)  2(7.14%) | 28

Loch Raven Schist | 3290(88.37%) 443(11.63%) | 3723
Mafic 349(96.14%)  14(3.86%) | 363
Marble 280(90.61%)  29(9.39%) | 309

Prettyboy Schist | 1343(95.72%)  60(4.28%) | 1403
Other Schists 887(95.07%)  46(4.93%) | 933
Serpentine 36(92.31%) 3(7.69%) 39

Total T726(91.08%)  757(8.92%) | 8483
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different geology groups

Table 3: Average (standard deviation) of well depth, static water level (SWL) and yield of

Geo-group depth (ft) SWL (ft) yield (1gallon/min)
Gneiss | Non-Failed | 255.07 (115.31) | 36.54 (16.43) | 9.67  (7.63)
Failed | 313.98 (148.50) | 36.86 (15.08) | 4.88  (4.61)
Granite Non-Failed | 217.96 (66.66) | 29.81 (10.62) | 10.43 (9.45)
Failed 225.00 (106.07) | 20.5  (0.7) | 8.00 (9.90)
Loch Raven | Non-Failed | 316.65 (138.06) | 39.62 (16.66) | 6.86  (6.68)
Schist Failed | 356.54 (152.77) | 40.53 (15.24) | 4.01 (4.17)
Mafic Non-Failed | 230.80 (105.54) | 29.52 (13.78) | 9.29 (7.79)
Failed | 263.00 (129.80) | 38.67 (12.26) | 6.20 (6.01)
Marble | Non-Failed | 267.10 (162.71) | 33.30 (18.93) | 12.60  (14.33)
Failed | 274.28 (147.21) | 30.95 (18.93) | 9.04 (6.02)
Prettyboy | Non-Failed | 255.30 (102.01) | 43.35 (15.80) | 8.63 (6.58)
Schist Failed 292.58 (146.98) | 45.39 (16.38) | 5.74 (5.30)
Other Schists | Non-Failed | 266.86 (117.52) | 42.49 (16.24) | 9.16 (7.52)
Failed 292.58 (146.98) | 43.04 (16.00) | 5.32 (4.01)
Serpentine | Non-Failed | 216.67 (108.74) | 37.13 (19.61) | 10.58 (9.18)
Failed 246.67  (50.33) | 30 (na) | 5.03 (3.65)

groups and failed and non-failed wells

Table 4: Analysis of variance of well depth, static water level and yield of different geology

depth SWL yield
F p-value F p-value F p-value
Geo-group 76.07 (< .0001) | 41.99 (< .0001) | 49.37 (< .0001)
Failed /Non-Failed | 72.80 (< .0001) | not significant | 150.04 (< .0001)
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Table 5: Summary of stepwise selection

Step Effect DF | Number Score p-value
Entered Removed in Chi-Square
1 Yield 1 166.7870 | < 0.0001
2 Geo-Group 75.9649 < 0.0001
3 | Yield*Geo-Group 3 17.1132 0.0167

Table 7: Maximum Likelihood Estimates of logistic regression model

Table 6: Analysis variance table of logistic regression

Effect DF | Chi-Square | p-value
Yield 1.4441 0.2295
Geo-Group 46.0736 < 0.0001
Yield*Geo-Group 18.1246 0.0114

Parameter

Intercept
Yield

Geotype
Geotype
Geotype
Geotype
Geotype
Geotype
Geotype
Yield*Geotype
Yield*Geotype
Yield*Geotype
Yield*Geotype
Yield*Geotype
Yield*Geotype
Yield*Geotype

DF

Gneiss
Granite

Loch

Mafic 1
Marble 1

T

Prettyboy
Schist

Gneiss
Granite

Loch

Mafic 1
Marble 1

S =

Prettyboy
Schist 1

16

1

1

Standard

Estimate Error Chi-Square
-1.8073 0.2188 68.2228
-0.1132 0.0275 16.9346
0.8290 0.2480 11.1762
-0.3632 1.0770 0.1137
0.4145 0.2286 3.2873

-0.7622 0.4426 2.9653
-0.0528 0.3559 0.0220
-0.5913 0.2862 4.2691
-0.1931 0.3046 0.4016
-0.0640 0.0327 3.8392
0.0695 0.1073 0.4200
-0.00935 0.0298 0.0983

0.0274 0.0556 0.2436
0.0753 0.0367 4.2058
0.0122 0.0370 0.1088
-0.0249 0.0410 0.3708

Pr > ChiSq

<.0001
<.0001
0.0008
0.7359
0.0698
0.0851
0.8821
0.0388
0.5262
0.0501
0.5170
0.7539
0.6216
0.0403
0.7415
0.5426



Table 8: Predicted probabilities of well failure at low yield rate of different geology group

Geo-group 1 gallon/min 10 gallon/min
Probability | Odd | Probability | Odd

Gneiss 23.94% 31.48% 6.00% 6.38%
Serpentine 21.62% 27.58% 4.39% 4.59%
Loch Raven Schist 18.01% | 21.97% 6.79% 7.28%
Marble 13.03% 14.98% 9.63% 10.66%
Other Schists 10.54% 11.78% 3.29% 3.40%
Granite 9.85% 10.93% 6.87% 7.38%
Pretty boy Schist 7.59% 8.21% 3.20% 3.31%
Mafic 6.57% 7.03% 3.15% 3.25%
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Figure 3: Pearson residual plots of each geology group
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Figure 4: Influence diagnostic
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Figure 5: Influence on Pearson residual of each geology group
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Figure 6: Influence on confidence interval of each geology group
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